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Abstract—5G and 6G networks are expected to support various
novel emerging adaptive video streaming services (e.g., live, VoD,
immersive media, and online gaming) with versatile Quality
of Experience (QoE) requirements such as high bitrate, low
latency, and sufficient reliability. It is widely agreed that these
requirements can be satisfied by adopting emerging networking
paradigms like Software-Defined Networking (SDN), Network
Function Virtualization (NFV), and edge computing. Previous
studies have leveraged these paradigms to present network-
assisted video streaming frameworks, but mostly in isolation
without devising chains of Virtualized Network Functions (VNFs)
that consider the QoE requirements of various types of Multime-
dia Services (MS). To bridge the aforementioned gaps, we first
introduce a set of multimedia VNFs at the edge of an SDN-
enabled network, form diverse Service Function Chains (SFCs)
based on the QoE requirements of different MS services. We
then propose SARENA, an SFC-enabled ArchitectuRe for adaptive
VidEo StreamiNg Applications. Next, we formulate the problem
as a central scheduling optimization model executed at the SDN
controller. We also present a lightweight heuristic solution consist-
ing of two phases that run on the SDN controller and edge servers
to alleviate the time complexity of the optimization model in
large-scale scenarios. Finally, we design a large-scale cloud-based
testbed including 250 HTTP Adaptive Streaming (HAS) players
requesting two popular MS applications (i.e., live and VoD),
conduct various experiments, and compare its effectiveness with
baseline systems. Experimental results illustrate that SARENA
outperforms baseline schemes in terms of users’ QoE by at least
39.6%, latency by 29.3%, and network utilization by 30% in both
MS services.

Index Terms—Network-Assisted Video Streaming; Dynamic
Adaptive Streaming over HTTP (DASH); HTTP Adaptive
Streaming (HAS); Service Function Chaining (SFC); Software-
Defined Networking (SDN); Network Function Virtualization
(NFV); Edge Computing.

I. INTRODUCTION

Emerging adaptive video streaming services such as latency-
sensitive (e.g., esport and online gaming), bandwidth-sensitive
(e.g., 4K/8K video-on-demand (VoD)) or both (e.g., immersive
media like virtual reality and augmented reality) have brought
new Quality of Experience (QoE) requirements in terms of
latency, bandwidth, and reliability. Satisfying these require-
ments is required for a pleasant user QoE which poses a
new challenge for redesigning the current best-effort network
architectures. Moreover, video traffic over mobile networks
grew exponentially during recent years, where more than 75%
of global mobile bandwidth will be used for video delivery
by 2025 [1]. Such growth is due to the rapid development

of mobile network technologies like 5G and 6G networks
and their associated emerging paradigms (or enablers) such
as SDN, NFV, and edge computing, demonstrating the critical
role of next-generation mobile networks in the future Internet.
That is why 5G and 6G hold promise to improve the QoE of
various video streaming applications.

Motivation: While most video traffic of nowaday’s ser-
vices uses HTTP Adaptive Streaming (HAS)-based delivery
systems [2] such as Dynamic Adaptive Streaming over HTTP
(DASH) [3] and HTTP Live Streaming (HLS) [4], designing a
holistic solution that supports various types of video streaming
services with their strict QoE requirements over the next
generation networks (e.g., 5G and 6G) is still missing. Some
prior works try to investigate this challenge, but mostly in
isolation, without considering a holistic network architecture
and their key enablers like SFC. Moreover, they only target
one or two QoE requirements of a specific video streaming
application.

These works are divided into two essential categories of
textitclient-based, server-assisted, and network-assisted solu-
tions. The client-driven solutions mainly optimize adaptive bi-
trate algorithms (ABR), the algorithm that selects the suitable
bitrates depending on network conditions and/or playout buffer
status [2]. These solutions are further divided into heuristic-
based rules and learning-based approaches. The heuristic-
based rules use one heuristic (or multiple heuristics) such
as buffer-level [5], throughput [6], or both [7], in a sort of
mathematical approximation to perform ABR decisions. Novel
learning-based approaches [8], [9] leverage deep reinforcement
learning (DRL) methods to improve users’ QoE without
any assumption about the environment or fixed rule-based
heuristics. Different from client-driven solutions, the server-
assisted solutions control clients’ adaptive bitrate algorithms
(ABR) decisions through client-server information sharing
based on common media client/server data (CMCD/CMSD)
standards [10] (e.g., [11]–[14]), among others. The network-
assisted solutions use in-network components, e.g., an SDN
controller or cloud/edge servers, to assure clients in their ABR
decisions [15]–[21].

Different network services are sent through a set of network
functions, nowadays in an NFV-based fashion, in a specific
order to provide demanded functionalities and maintain ser-
vice requirements. Therefore, designing appropriate VNFs for



particular services like MSs, mapping them to network nodes,
and steering traffic among them is a necessary SFC procedure
for successful service orchestration and delivery over next-
generation networks. Although SFC has been investigated
to solve various problems in the network domain, there is
no SFC-enabled architecture for video streaming use cases.
While there is a plethora of non-SFC based solutions, there
exists no holistic solution that (1) leverages emerging network
paradigms, e.g., SDN, SFC, and edge computing, to (2) satisfy
QoE requirements of multiple types of adaptive streaming
services considering efficient service functions orchestration.

Contributions: This paper proposes an SFC-enabled
ArchitectuRe for adaptive VidEo StreamiNg Applications
(SARENA). SARENA utilizes SFC for QoE improvement and
awareness of various adaptive video streaming services. We
design multimedia VNFs, build SFC chains, and utilize all
possible Contnet Delivery Network (CDN) and edge server
resources for serving different multimedia service requests in
an SDN-enabled network. We formulate the problem as a cen-
tral mixed-integer linear programming (MILP) optimization
focusing on service scheduling. We then utilize the SDN con-
troller capability to dynamically auto-scale edge servers based
on service requirements. We augment each edge server with a
lightweight scheduling function to alleviate the scalability and
NP-complexity of the MILP model and make it deployable in
practical environments. We analyze SARENA’s performance
through experiments performed in a large-scale cloud-based
testbed including 250 clients and compare its results with
selected baseline schemes. The experimental results confirms
that SARENA outperforms baseline systems in terms of users’
QoE, latency, and network utilization in a heterogeneous
service environment.

Paper Outline: The remainder of this paper is organized
as follows. Section II-A describes SARENA’s architecture; the
problem then is formulated as an MILP optimization model in
Section II-B, and is solved by a lightweight heuristic method
in Section II-C. The evaluation setup, methods, metrics, and
results are described in Section III. Finally, Section IV con-
cludes the paper and gives an outlook on future work.

II. SARENA SYSTEM DESIGN

In this section, we delve into the SARENA architecture,
describe the system model and propose a heuristic solution.

A. SARENA Architecture

SARENA consists of three network layers as shown in Fig. 1.
Edge Layer (EL). This layer includes edge servers close to

base stations (e.g., gNodeB in 5G) and clients. Inspired by the
Consumer Technology Association CTA-5004 standard [10],
each edge server periodically communicates with the SDN
controller and shares its available computational resources’
status, e.g., CPU and RAM (in so-called comp stat messages),
the number of connected clients (client stat messages), the
number/type of multimedia service requests (MS stat mes-
sages), and the cache occupancy (in edge stat messages) with
the SDN controller. All edge devices are equipped with the
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Figure 1: The proposed SARENA architecture

following VNFs: 1 Virtual Proxy Function (VPF), which
enables an edge server to play the role of a gateway between
its associated clients and the network, i.e., receiving clients’
demands for different MS services, employing determined
decisions by the SDN controller, and responding to them;
2 Virtual Cache Function (VCF), utilized to store a limited

number of popular segments for different MS services; 3 Vir-
tual Transcoding Function (VTF), responsible for using com-
putational resources and transcoding high quality segments to
the required lower quality levels. These functions placed at the
edge can collaborate and/or use other layer services to build
SFCs and serve clients with desired service requirements.

Infrastructure Layer (IL). This layer consists of a group of
CDN servers (either Over-the-Top (OTT) servers or purchased
services from CDN providers) denoted by 4 ; each CDN
contains various parts of video sequences. Like the EL layer,
CDN servers periodically inform the SDN controller about
their cache occupancy through CDN stat messages. Moreover,
an origin server (shown by 5 ) contains all video segments
in multiple representations is placed in this layer. OpenFlow
(OF) switches form an SDN-enabled backbone network.

Core Layer (CL). An SDN controller is placed in this layer,
as shown in Fig. 1, augmented with a Network/Service (N/S)
Monitoring module to monitor the EL and IL layers and collect
the stat information about the network and MS services. Op-
erating in a time-slotted fashion, the N/S monitoring module
feeds a central decision-maker optimization module, called
Requests Scheduler. This module optimally serves different
MS requests with diverse requirements invoked by all edge
servers. For this purpose, the requests scheduler module must
respond to the following crucial questions: (1) Where is the
optimal place (i.e., edge, CDN servers, or origin server) for
fetching the content quality level requested by each client,
while efficiently employing layers’ available resources and
satisfying service requirements (e.g., service deadlines)? (2)



How can we use the functions/services provided in the EL and
IL layers to form MS function chains (SFCs)? (3) What is the
optimal SFC for responding to the requested quality level with
specific service requirements? To respond to these questions,
the requests scheduler considers all possible functions/services
to make the following SFCs, then runs an optimization model
to determine the optimal node and optimal SFC, considering
the service requirements. We will elaborate on the optimization
model in more detail in Section II-B. Possible SFC chains
are: SFC#1: Fetch the demanded quality level directly from
the edge server ( 1 → 2 ). SFC#2: Transcode the demanded
quality level from a higher quality at the edge ( 1 → 2 →
3 ). SFC#3: Fetch the requested quality level directly from the

best CDN server (i.e., in terms of the available bandwidth) (
1 → 4 ). SFC#4: Fetch the requested quality from the origin

server ( 1 → 5 ). SFC#5: Fetch a higher quality level from
the best CDN server and transcode it into the demanded one
at the edge ( 1 → 4 → 3 ). Notably, the SDN controller
informs the VPF of edge servers about the optimal SFC
and location; accordingly, edge servers serve their clients’
requests from the determined server based on their service
requirements.

Furthermore, the SDN controller employs a QoE Analyzer
module to periodically analyze each edge server’s served MS
requests. Indeed, it uses information provided by the N/S
monitoring and requests scheduler modules as inputs of a QoE
model (see Section III), and if the calculated QoE value cannot
meet the service threshold, it triggers the Edge Configurator
module to adjust the edge configurations automatically. The
auto-scaling feature utilized in the edge configurator, recently
popular in both academia [22] and industry [23], assists
the edge servers in providing assured service for streaming
applications requiring varying amounts of computing resources
in response to dynamic client behavior over time.

B. Problem Formulation
We introduce an MILP optimization model consisting of

four constraint groups: Chain Selection, Latency Calculation,
Service/Policy, and Resource Utilization constraints. Table I
summarizes the notations used in this paper.

(i) Chain Selection constraint. Let us define the binary
decision-making variables Dq,r

i,e,c where Dq,r
i,e,c = 1 shows edge

i = e or i ∈ S serves request r with quality level q ∈ Qr via
SFC chain c ∈ C, otherwise Dq,r

i,e,c = 0. Therefore, Eq. (1)
chooses the best SFC chain for each request r issued by edge
server e ∈ E by setting the Dq,r

i,e,c to assure that each request
is not parallelized, i.e., split over multiple chains:∑
i∈{S∪e}

∑
c∈C

∑
q∈Qr

Dq,r
i,e,c × αq,r

i = 1, ∀e ∈ E , r ∈ Re (1)

(ii) Latency Calculation constraints. Eq. (2) measures the
transmission time T q,r

i,e , if cloud server i in one of the SFC#3,
SFC#4, or SFC#5 is selected to transmit quality level q ∈ Qr

to edge server e:∑
c∈C

Dq,r
i,e,c × δq,r ≤ T q,r

i,e × ωi,e, ∀r ∈ Re, q ∈ Qr, i ̸= e (2)

Table I: Summary of main notations.
Notation Description

Input Parameters
E Set of n edge servers
S Set of k cloud servers, including CDNs and an origin

(i.e., s = 0)
C Set of SFC chains, where c = {1, 2, 3, 4, 5}
R Set of x various MS requests received by the SDN

controller from E
Re Set of various MS requests issued by edge server e ∈ E
Qr Set of possible quality levels for serving quality q∗ issued

by r ∈ R, where Qr = {q∗, q∗ + 1, ..., q∗max} and q∗max
is the maximum quality level for the requested segment

Aq,r
i Available quality levels in edge VCF (i.e., i ∈ E) or cloud

servers (i.e., i ∈ S) to serve r ∈ R; αq,r
i = 1 means i hosts

quality q to serve r ∈ R, otherwise αq,r
i = 0

δq,r Segment size in quality q requested by r ∈ R
σq,r Required resources (i.e., CPU time in seconds) for

transcoding quality q ∈ Qr requested by r ∈ R
ηq,r Bitrate associated to quality level q ∈ Qr requested by r ∈ R
µq,r Required time for transcoding quality q ∈ Qr into the quality

q∗ requested by r ∈ R
πe Available computational resource (available CPU) of VTF

in e ∈ E
ωi,e Available bandwidth on path between i ∈ S and e ∈ E
θr Given deadline for delivering request r ∈ R based on its MS

type
Variables

Dq,r
i,e,c Binary variable where Dq,r

i,e,c = 1 indicates edge i = e or
i ∈ S serves request r with quality level q ∈ Qr via SFC
chain c ∈ C, otherwise Dq,r

i,e,c = 0

Pq,r
e Required transcoding time at VTF in e ∈ E for serving r ∈ R

with quality level q ∈ Qr

T q,r
i,e Required time for transmitting quality q ∈ Qr in response to

request r ∈ R issued by e ∈ E from i ∈ S and c ∈ {3, 4, 5}
χ Total serving latency consisting of Pq,r

e and T q,r
i,e for all MS

services

Furthermore, Eq. (3) determines the required transcoding time
Pq,r
e at edge e in case of serving the quality demanded by r

from a higher quality q in SFC#2 or SFC#5:∑
c∈C\{1,3,4}

∑
q∈Qr

Dq,r
i,e,c × µq,r ≤ Pq,r

e , (3)

∀e ∈ E , i ∈ {S ∪ e}, r ∈ Re

(iii) Service/Policy constraints. The first constraint
(Eq. (4)) of this group guarantees that the total request’s
serving latency for preparing the requested quality q of request
r must respect the request service deadline (denoted by θr):∑
i∈{S∪e}

∑
q∈Qr

T q,r
i,e + Pq,r

e ≤ θr, ∀e ∈ E , r ∈ Re (4)

The total services’ serving latency, namely χ, i.e., fetching
time plus transcoding time, for all requests can be expressed
as the following constraints (Eq. (5)):∑
r∈R

∑
i∈{S∪e}

∑
e∈E

∑
q∈Qr

T q,r
i,e + Pq,r

e ≤ χ (5)

Moreover, Eq. (6) sets the IL policy by forcing the model
to fetch the exact quality q∗ from the origin server when the
origin server (i.e., s = 0) is selected to serve r.∑
q∈Qr

Dq,r
i=0,e,c=4 × q = q∗, ∀e ∈ E , r ∈ Re (6)

(iv) Resource Utilization constraints. Eq. (7) ensures that
the required bandwidth for transmitting quality q on the link



between cloud server i and edge e must respect the available
bandwidth (denoted by ωi,e):∑
r∈Re

∑
c∈C

∑
q∈Qr

Dq,r
i,e,c × ηq,r ≤ ωi,e, ∀e ∈ E , i ∈ S, i ̸= e (7)

Furthermore, Eq. (8) restricts the maximum required process-
ing capacity for transcoding to the available computational
resource on each edge server e (denoted by πe):∑
r∈Re

∑
i∈{S∪e}

∑
c∈C\{1,3,4}

∑
q∈Qr

Dq,r
i,e,c × σq,r ≤ πe ∀e ∈ E (8)

Central Scheduling Optimization Model. An ABR al-
gorithm embedded in a HAS player assesses the network’s
bandwidth by measuring the time between sending the request
to download a segment and receiving the segment’s last packet.
Thus, minimizing the serving latency in the optimization
model directly impacts the HAS clients’ performance. To this
end, the model for minimizing total requests’ serving latency,
denoted by χ, can be expressed as follows:

Minimize χ (9)
s.t. constraints Eq.(1)− Eq.(8)

vars. T q,r
i,e ,Pq,r

e , χ ≥ 0, Dq,r
i,e,c ∈ {0, 1}

By running the MILP model (Eq. (9)), an optimal chain will be
selected for each request to minimize the total serving time.
However, since the MILP model is NP-hard [24], it suffers
from high time complexity and is impractical for large-scale
scenarios. Thus, we introduce a lightweight heuristic solution
in the next section to cope with the aforementioned problems.

C. Lightweight Heuristic Algorithms

This section proposes two simple lightweight algorithms
distributed on the SDN controller and edge servers. Our
solution aims at satisfying the constraints (1)–(8) by reduc-
ing the responsibilities of the SDN controller in terms of
MS requests’ scheduling and introducing a new VNF called
Virtual Scheduler Function (VSF) deployed at the edge. The
VSF function utilizes constraints (1)–(8) in the form of a
lightweight heuristic algorithm to produce a nearly-optimal
solution for its local edge server instead of running a central
complex optimization model for all edge servers. Although
we split the central MILP model (9) into edge VSFs, the SDN
controller, as a coordinator node, still collects stats information
from the layers (i.e., by N/S monitoring), advertises this
information to edge servers, and analyzes served requests’
QoE (i.e., by the QoE analyzer) and reconfigures edge servers
if their associated MS services can not meet the defined service
thresholds (i.e., by the edge configurator).

Like the centralized model, the VSF-based solution works
in a time-slotted manner. A time slot consists of two intervals:
(i) Stats/Requests Collector (SRC) interval and (ii) Requests
Scheduler (RES) interval. In the SRC interval, an edge server
simultaneously receives stats information and MS requests
provided by the SDN controller and the VPF function, respec-
tively. Considering the provided data, the VSF function in the

Algorithm 1: Edge server heuristic algorithm
Input: requests, stat info, BW info, on the fly

1 features← ExtractFeatures(requests)
2 MS queues← MakeQueues(requests, features)
3 *//Each MSm Thread: VSF()
4 sort(MS queuem, featuresm)
5 for each req in MS queuesm do
6 if req ∈ on the fly then
7 HoldReq(req)
8 else
9 on the fly.add(req)

10 SFC set←SFCDetector()
11 SFC cost← CostFunction(SFC set)
12 opt SFC ←OptimalSFC(SFC set,SFC cost)
13 ServeRequest(req,opt SFC)
14 UpdateVariables()

RES interval runs Alg. 1 to serve MS requests by choosing
suitable SFCs, i.e., SFC#1: 2 , SFC#2: 2 → 3 , SFC#3:
4 , SFC#4: 5 , or SFC#5: 4 → 3 , and minimizes the total

serving latency w.r.t. the service requirements and objective
function of Eq. (9). We present the proposed algorithms
separately in Alg. 1 and Alg. 2, which are deployed on the
edge servers and the SDN controller, respectively.

Edge-based Scheduling Heuristic Algorithm. As shown
in Alg. 1, each edge server receives data provided by the
SDN controller, i.e., stat info and information on band-
width to CDN/origin servers (i.e., BW info) in the SRC
interval. The edge server calls the ExtractFeatures function
to extract some essential features of input requests, e.g., MS
types, requested videos/channels, requested qualities, request
receiving time, and service deadlines (line 1). After that, based
on the extracted features stored in the features list, the
MakeQueues function is utilized to form different queues of
requests (line 2). For instance, two popular MS applications,
i.e., VoD and live requests, are placed in separate queues based
on MS type, requested live channel/VoD video IDs, and bitrate
levels. Considering the system’s current state, i.e., available
information on resources (i.e., stat info) and queues of MS
requests, the edge server in the RES interval must run multiple
threads of a VSF function (one thread per MS type) to answer
the questions mentioned in Section II-A.

At the start of each VSF thread, associated MS queues
are sorted based on the extracted information, like service
deadline using the sort function (line 4). Next, each MS
request (req) is compared to on the fly requests (i.e., re-
quests currently being served). If req is in the on the fly
list, then it calls HoldReq to hold the request and prevent
network resource wastage and congestion (lines 6–7). Oth-
erwise, the on the fly list is updated by the req to be
processed (line 9). In the next step, the SFCDetector function
determines all feasible SFCs (i.e., SFC#1–SFC#5) and stores
them in the SFC set list (line 10). Considering the objec-
tive function (9) and defined constraints (1)–(8), the serving
latencies of the SFCs contained in SFC set are calculated
by calling the CostFunction function and then the results
are saved in SFC cost (line 11). Next, the OptimalSFC
function calculates the minimum value (i.e., serving latency)



Algorithm 2: SDN controller heuristic algorithm
1 while True do
2 stat info,BW info← N/S-Monitoring()
3 for each e in E do
4 MS QoE e← QoEAnalyzer(e)
5 if MS QoE e < MS QoE th then
6 EdgeConfigurator(e)

7 Update(E)
8 Wait (τ )

in the SFC cost structure, retrieves its associated SFC from
SFC set, and saves it as the optimal SFC (line 12). Finally,
the ServeRequest and UpdateVariables functions are utilized to
serve the clients’ request with the optimal SFC and to upgrade
stat information and the on the fly list, respectively (lines
13–14). Note that since more than one queue can proceed
and might violate all/several resource constraints (e.g., the
bandwidth and/or computational limits), they are evaluated in
a priority order where the queue with more requests and earlier
service deadlines comes first. This process will be repeated in
each RES interval until the MS session ends and all queues
are served. Assume β1, β2, and β3 indicate the number of MS
services, number of channels/videos, and number of bitrates
per channel/video. In the worst case, the time complexity of
the multi-threaded Alg. 1 employed by each edge server would
be O(β1 × β2 × β3) in each time slot.

SDN-based Management Heuristic Algorithm. In Alg. 2,
the SDN controller uses the N/S-Monitoring function to collect
the stats and bandwidth information from the network and
servers, plus average QoE parameters for the served requests
in the previous time slot (line 2). Based on the collected data,
the QoE Analyzer function is called to calculate the MS QoE
scores for each edge server and store values in each edge
MS QoE e list (line 4) (see Section III for the used MS
QoE model). Next, if the calculated values violate the service
QoE thresholds (denoted by MS QoE th), which is adjusted
by the network or video operator based on their business
plans and services, the EdgeConfigurator function is called
to reconfigure the edge server (lines 5–6) and then updates
all edge servers (line 7). We note that any policy on QoE
analyzing and auto-scaling can be applied. This explained
procedure will repeat periodically after τ seconds, where τ
is the duration of the SRC interval within the while loop (line
8). The overall time complexity of Alg. 2 can be given as
O(n), where n is the number of edge servers.

III. PERFORMANCE EVALUATION

Evaluation Setup: To evaluate the performance of SARENA
in a realistic large-scale environment, we instantiate our
testbed on the CloudLab [25] and use InternetMCI [26] as
a real backbone network topology. Our testbed includes 280
components, i.e., (i) 250 AStream [27] DASH players running
the BOLA [5] ABR algorithm in headless modes (five groups
of 50 peers); (ii) five Apache HTTP servers (i.e., four CDN
servers with a total cache size of 40% of the MS video datasets
and an origin server, holding all MS video sequences); (iii) 19

OpenFlow (OF) backbone switches and 45 backbone layer-
2 links; (iv) five edge servers, each of which is responsible
for one group of clients and includes a partial cache size
of only 5% of the MS video sequences; and a FloodLight
SDN controller. Note that each element is run on Ubuntu
18.04 LTS inside Xen virtual machines within separated Linux
namespaces. To emulate the auto-scaling feature, a basic
configuration (i.e., 4 CPU cores and 6 GB RAM) of virtual
machines supporting a maximum of 10 CPU cores and 16
GB RAM is assigned to all edge servers at the beginning
of all experiments. Next, the edge servers’ configurations
scale up edge configurations by adding 2 CPU cores and 2
GB RAM whenever the SDN edge configurator module is
triggered. Although SARENA is independent of the caching
policy, for the sake of simplicity, Least Recently Used (LRU)
cache replacement policy is considered in all CDNs and VCFs.
Note that the most popular MS VoD videos are pre-cached on
the VCFs to avoid a slow startup of the system. Python 3.7 is
used to implement all modules of the SDN controller and the
VNFs. Moreover, the Python PuLP library with the CPLEX
solver and Dockerimage jrottenberg/ffmpeg [28] are employed
to implement the MILP model and VTSs, respectively.

We evaluate the performance of SARENA through two
prevalent MS services, i.e., VoD and live streaming applica-
tions. (MS QoE th, θr) values associated with live and VoD
services are set to (4, 2 s) and (3.5, 4 s), respectively, to make
different service requirements. We consider five live channels,
where each of which plays a unique video [29] with 300 s dura-
tion, comprising two-second segments of the following bitrate
ladder {(0.089,320p), (0.262,480p), (0.791,720p), (2.4,1080p),
(4.2,1080p)} [Mbps, resolution]. Moreover, 20 video se-
quences [29] with 300 seconds duration and four-second seg-
ments in seven representations {(0.128,320p), (0.320,480p),
(0.780,720p), (1.4,720p), (2.4,1080p), (3.3,1080), (3.9,1080)}
are employed for the VoD services. For simplicity, we assume
each client requests only one MS type during its streaming
session. The live channel and VoD video access probability
are generated following a Zipf distribution with the skew
parameter α = 0.75. The probability of an incoming request
for the ith most popular live channel or VoD video are given as
prob(i) = 1/iα∑K

j=1 1/jα
, where K = 5 and K = 20 for the live

and VoD services, respectively. In the literature, the bandwidth
value from the CDN servers to an edge server is assumed to
be higher than from the origin server to an edge server. [30].
Therefore, the Linux Wondershaper tool is employed to set
50 and 100 Mbps as a bottleneck bandwidth in different
paths from the CDN and origin servers to edge servers,
respectively. In addition, we use a real 4G network trace [31]
(average bandwidth 3780 kbps and standard deviation 3190
kbps) collected on bus rides for links between clients to edge
servers in all experiments. The SDN QoE analyzer module
uses the ITU-T Rec. P.1203 model in mode 0 [32], as a
standard comprehensive QoE model. The computational and
bandwidth costs are set to 0.029$ per CPU per hour and 0.12$
per GB, respectively [33].



A
S

B
 (

M
b

p
s)

A
Q

S
 

A
S

D
 

A
N

S
 

(s
e

c.
)

A
P

Q

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

VoD Application Live Application

0

30

60

90

120

Live ApplicationVoD Application
0

25

50

75

100

125

150

Live ApplicationVoD Application

0

10

20

30

40

Live ApplicationVoD Application
0

0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

VoD Application Live Application

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

A
S

L
 (

se
c.

) 

VoD Application Live Application
0

0.4

0.8

1.2

1.6

2

B
T

L
 (

G
b

p
s)

Live ApplicationVoD Application
0

10

20

30

40

E
T

R
 (

%
)

0

1

2

3

4

5

6

7
Bandwidth Computation

N
C

V
 (

$
)

CDA
NVA

NTE
NRE

SARENA

VoD Application Live Application

(b)

(f)

(a)

(h)(g)

(c) (e)(d)

(i)

CDA NVA NTE NRE SARENA
better 

better better better 
better 

better better better better 

Figure 2: QoE (a–f), and network utilization (g-i) results for the CDA, NVA, NTE, NRE and SARENA systems for 250 clients

Evaluated Methods: Since there are no SFC-enabled
frameworks supporting various HAS applications in the lit-
erature, we compare the results obtained by SARENA with the
following baseline methods: (i) CDN-assisted (CDA): this is a
regular CDN-based streaming method. (ii) Non VNF-assisted
(NVA): edge devices without VCF and VTF functions are
used to find the best CDN server with maximum available
bandwidth. (iii) Non VTF-enabled (NTE): edge servers are
equipped with the VCFs, but do not support VTFs. (iv) Non
Reconfiguration-enabled (NRE): this approach employs a sim-
ple version of SARENA without the SDN edge configurator
module. For fair comparisons, the results of all systems
are derived with respect to the same settings and the same
topology in our testbed. Moreover, each experiment is run
20 times, and the average and standard deviation values are
reported in the experimental results.

Evaluation Metrics: (i) Average Segment Bitrate (ASB) of
all the downloaded segments; (ii) Average Number of Quality
Switches (AQS), the average number of segments whose bitrate
level changed compared to the previous one; (iii) Average Stall
Duration (ASD), the average of total video freeze time of
all clients; (iv) Average Number of Stalls (ANS), the average
number of rebuffering events; (v) Average Perceived Overall
QoE (APQ) calculated by the ITU-T Rec. P.1203 model in
mode 0; (vi) Average Serving Latency (ASL), defined as the
overall time for serving all clients, including fetching latency
plus transcoding latency; (vii) Backhaul Traffic Load (BTL),
the volume of segments downloaded from the origin server;
(viii) Edge Transcoding Ratio (ETR), the fraction of segments
reconstructed by the VTFs; (ix) Cache Hit Ratio (CHR),
defined as the fraction of segments fetched from the CDN
or edge servers; (x) Network Cost Value (NCV), consisting of
computational and bandwidth costs. Note that the arrows in
each metric plot (Fig. 2 (a)–(i)) indicate which direction (up
or down) represents a better result.

Evaluation Results: In the first scenario, we conduct ex-
periments to assess SARENA’s performance in terms of the
QoE metrics and compare the results with described baseline
systems. As plotted in Fig. 2(a–d), SARENA downloads VoD
and live streaming segments with higher ASBs, improves

AQSs and ANSs, and shortens ASDs in both VoD and live
streaming applications. Although enhancing the aforemen-
tioned common QoE parameters can generally improve the
users’ satisfaction, the standard comprehensive QoE model is
utlized by the APQ metric to evaluate overall users’ QoE. Note
that stalling events (measured by ASD and ANS) seriously
impact APQ compared to other parameters. Utilizing the VCFs
and VTFs in SFCs enables the SARENA system to download
MS segments with improved QoE metrics, especially ASD,
and leads to achieving better APQ by at least 53% and 39.6%
for VoD and live streaming, respectively, compared to the
baseline approaches (Fig. 2(e)). Moreover, as illustrated in
Fig. 2(f), the average serving latency values (ASL) obtained
by SARENA in VoD and live applications are reduced by at
least 32.5% and 29.3% compared to other methods. This is
because SARENA (i) uses latency- and QoE-sensitive policies
to meet θr and MS QoE th values, (ii) utilizes all layers
of possible resources employed in SFCs, and (iii) operates an
auto-scaling policy provided by the SDN controller, for serving
MS requests.

The second scenario studies the effectiveness of SARENA
in terms of network utilization (i.e., BTL and ETR) and
network cost metrics (i.e., NCV). Since SARENA (i) fetches
requested or higher MS quality levels from the VCF or CDN
servers and (ii) transcodes requested MS quality levels by
VTF, it downloads fewer segments from the origin server,
consequently outperforms the CDA, NVA, and NTE systems in
terms of BTL (Fig. 2(g)). Moreover, the auto-scaling capability
provided by the SDN controller assists SARENA in yielding
a better BTL (40% and 30% for VoD and live applications,
respectively) compared to the NRE system. Moreover, the ETR
metric indicates that the auto-scaling feature allows SARENA
to operate more computational resources of the edge servers to
transcode MS applications, especially for serving live stream-
ing requests, as latency-sensitive demands (Fig. 2(h)). Note
that the ETR metrics for not transcoding-enabled systems,
i.e., CDA, NVA, and NTE, are zero. Although the SARENA
uses more edge computational resources, our final experiment
(Fig 2(i)) demonstrates that its NCV metric is still lower than
for CDA and (almost) identical to the NRE system. This is



because SARENA improves the costly BTL metric.

IV. CONCLUSION AND FUTURE WORK

We presented SARENA, an SFC-enabled architecture for
adaptive video streaming applications. The main objective
of SARENA is to use the cooperation of emerging 5G/6G
paradigms such as SDN, SFC, and edge computing to serve
efficiently various types of adaptive video streaming services
such as latency- and/or bandwidth-sensitive ones, satisfying
their QoE requirements in terms of latency, bandwidth, and
reliability. Our experimental results over a large-scale testbed
show that SARENA outperforms baseline approaches in terms
of QoE by at least 39.6%, latency by 29.3% , and network
utilization by 30%. In the future, we plan to address real-time
decision-making for the SFC selection of multimedia services
by adopting reinforcement (RL) learning techniques.
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